fbpx
Tras varias sesiones de rehabilitación con la BCI, el paciente experimentó notables mejoras en las percepciones sensoriales y habilidades motoras que se mantuvieron incluso con el dispositivo desconectado. / CHUV/Gilles Weber

Ana Hernando  | Agencia SINC

El holandés Gert-Jan Oskam, que sufrió hace más de una década una lesión medular a causa de un accidente, ha recuperado el control natural de sus piernas paralizadas con la ayuda de un ‘puente digital’. Este sistema restablece la comunicación entre el cerebro y la médula espinal y transforma el pensamiento en acción con inteligencia artificial. El avance ha estado liderado por investigadores suizos.

El neurocientífico Grégoire Courtine, de la Escuela Politécnica Federal de Lausana (EPFL), junto a la neurocirujana Jocelyne Bloch, del Centro hospitalario Universitario de Vaud de la EPFL (ambos en Suiza), llevan años investigando para que personas con la médula espinal dañada vuelvan a andar. En 2018, lograron que tres hombres paralizados desde hacía varios años consiguieran ese objetivo, tras introducirles implantes electrónicos en la médula espinal.

Ahora, un equipo, a cuyo frente están ambos investigadores, ha desarrollado una tecnología inalámbrica que ha permitido volver a caminar a Gert-Jan Oskam, un hombre holandés 40 años que, hace más de una década, sufrió la parálisis de sus piernas por daño medular tras un accidente de bicicleta.

“Hemos creado un ‘puente digital’ entre el cerebro y la médula espinal, mediante una interfaz cerebro-ordenador [BCI], que transforma el pensamiento en acción con algoritmos de inteligencia artificial”, destaca Courtine, líder del estudio publicado en Nature.

El ‘puente digital’ entre el cerebro y la médula espinal permitió al paciente recuperar el control natural del movimiento de sus piernas, ponerse de pie, caminar e incluso subir escaleras

El paciente toma el control

Los autores explican que esta tecnología permitió al paciente recuperar el control natural del movimiento de sus piernas paralizadas. Además, después de varias sesiones de rehabilitación con la BCI, el equipo cuantificó notables mejoras en sus percepciones sensoriales y habilidades motoras, que se mantuvieron incluso cuando el dispositivo estaba desconectado. 

En este sentido, Andrea Gálvez Solano, investigadora de la EPFL y primera firmante del trabajo, comenta a SINC que “la novedad de la BCI es que el paciente puede controlar la estimulación —y por tanto los movimientos— directamente a través de sus pensamientos”.

Según Gálvez, “esto significa que es capaz de dar pasos más largos o cortos, caminar sobre diferentes superficies e incluso subir escaleras, adaptándose a los entornos de la vida cotidiana. Es probable que la activación simultánea de las neuronas por encima y debajo de la lesión, que permite la interfaz, junto con sesiones de rehabilitación específicas, favorezca la recuperación neurológica y mejore el cuadro clínico del paciente, subraya.

Tras varias sesiones de rehabilitación con la BCI, el paciente experimentó notables mejoras en las percepciones sensoriales y habilidades motoras que se mantuvieron incluso con el dispositivo desconectado Foto: CHUV/Gilles Weber

Para establecer el puente digital, se necesitaron dos tipos de implantes electrónicos. Bloch lo explica: “Hemos implantado electrodos, desarrollados por el centro de investigación público francés CEA, sobre la región del cerebro que controla el movimiento de las piernas. Estos dispositivos permiten descodificar las señales eléctricas que genera el cerebro cuando pensamos en caminar. También “colocamos un neuroestimulador conectado a una guía de electrodos sobre la región de la médula espinal encargada de las extremidades inferiores”.

Al hombre le implantaron un dispositivo en el cerebro, por encima de la región que controla el movimiento de las piernas, y otro en la médula espinal  

Por su parte, Guillaume Charvet, responsable del programa BCI en el CEA, comenta que “gracias al uso de algoritmos de inteligencia artificial adaptativa, las intenciones de movimiento del paciente se descodifican en tiempo real a partir de registros cerebrales”.

A continuación, “estas intenciones se convierten en secuencias de estimulación eléctrica de la médula espinal, que a su vez activan los músculos de las piernas para lograr el movimiento deseado. Este puente digital funciona de forma inalámbrica, lo que permite al paciente desplazarse de forma autónoma”, señala el experto.

Otras posibles aplicaciones

Oskam cuenta que, después de doce años, ha recuperado la agradable sensación de poder compartir una cerveza de pie en un bar con sus amigos: “Este simple placer representa un cambio significativo en mi vida”, comenta satisfecho.

Hasta el momento, el sistema BCI solo se ha probado con él. Sin embargo, según Gálvez,“en el futuro, podría utilizarse una estrategia parecida para restablecer las funciones del brazo y la mano. También podría aplicarse a otros problemas neurológicos, como la parálisis debida a un ictus“.

La empresa ONWARD Medical, junto con el CEA y la EPFL, ha recibido apoyo de la Comisión Europea a través de su Consejo Europeo de Innovación para desarrollar una versión comercial del puente digital, con el objetivo de que la tecnología esté disponible en todo el mundo.

Referencia:

G. Courtine et al.“Walking naturally after spinal cord injury using a brain–spine interface”. Nature (mayo, 2023)

Ana Hernando  | Agencia SINC